Published in

2005 IEEE Congress on Evolutionary Computation

DOI: 10.1109/cec.2005.1554741

Links

Tools

Export citation

Search in Google Scholar

Adapting multiple kernel parameters for support vector machines using genetic algorithms

Proceedings article published in 2005 by S. A. Rojas, D. Fernandez Reyes ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Kernel parameterization is a key design step in the application of support vector machines (SVM) for supervised learning problems. A grid-search with a cross-validation criteria is often conducted to choose the kernel parameters but it is computationally unfeasible for a large number of them. Here we describe a genetic algorithm (GA) as a method for tuning kernels of multiple parameters for classification tasks, with application to the weighted radial basis function (RBF) kernel. In this type of kernels the number of parameters equals the dimension of the input patterns which is usually high for biological datasets. We show preliminary experimental results where adapted weighted RBF kernels for SVM achieve classification performance over 98% in human serum proteomic profile data. Further improvements to this method may lead to discovery of relevant biomarkers in biomedical applications