Published in

Optica, Optics Express, 21(17), p. 18419, 2009

DOI: 10.1364/oe.17.018419

Links

Tools

Export citation

Search in Google Scholar

Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of coherent anti-Stokes Raman scattering microscopy tuned to the lipid vibration for quantitative myelin imaging suffers from the excitation polarization dependence of this third-order nonlinear optical effect. The contrast obtained depends on the orientation of the myelin membrane, which in turn affects the morphometric parameters that can be extracted with image analysis. We show how circularly polarized laser beams can be used to avoid this complication, leading to images free of excitation polarization dependence. The technique promises to be optimal for in vivo imaging and the resulting images can be used for coherent anti-Stokes Raman scattering optical histology on native state tissue.