Published in

Elsevier, Journal of Biological Chemistry, 21(257), p. 12594-12599, 1982

DOI: 10.1016/s0021-9258(18)33552-x

Links

Tools

Export citation

Search in Google Scholar

Purification and characterization of a novel UpN-specific endoribonuclease VI from Artemia larvae.

Journal article published in 1982 by M. Quintanilla, J. Renart ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Artemia larval ribonuclease (Sebastián, J., and Heredia, C. F., (1978) Eur. J. Bichem. 90, 405-411) has been purified near homogeneity and its properties were studied. It consists of a single polypeptide chain of 38,000 daltons. It requires a divalent cation for activity. Ca2+ is the most effective among the metals tested. The metal dependence of the activity is biphasic. Maximal activity is obtained at 5-10 mM. In the absence of metals and chelating agents in the assay, 30-40% of the activity is observed. However, if chelating agents are added, the activity is abolished. At low concentrations of free metal (1-20 microM), 30-40% of maximal activity is obtained with Ca2+ or Mn2+, but not with Mg2+, Ca2+, but not Mn2+ or Mg2+, protects the enzyme from thermal inactivation. The best substrates for Artemia ribonuclease are poly(U) and poly(A), although with the latter it has only 10% the activity shown with the former. Using poly(U) as substrate, the products of a terminal digestion are P-2':3'-Urd and 3'-UMP. Using dinucleoside monophosphates as substrates, the enzyme is highly specific for a U residue at the 3' side of the phosphodiester bond (UpN), especially UpA, being inactive if the U residue is at the 5' side (NpU). Although some of its properties are similar to other eukaryotic or prokaryotic ribonucleases, its high specificity for UpN bonds suggest that this is a new type of ribonuclease. Moreover, it is a potentially useful enzyme for RNA analysis and/or sequencing.