Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Protocols, 5(7), p. 946-958, 2012

DOI: 10.1038/nprot.2012.035

Links

Tools

Export citation

Search in Google Scholar

Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role of hydrogen peroxide (H(2)O(2)) in mitochondrial oxidative damage and redox signaling is poorly understood, because it is difficult to measure H(2)O(2) in vivo. Here we describe a method for assessing changes in H(2)O(2) within the mitochondrial matrix of living Drosophila. We use a ratiometric mass spectrometry probe, MitoB ((3-hydroxybenzyl)triphenylphosphonium bromide), which contains a triphenylphosphonium cation component that drives its accumulation within mitochondria. The arylboronic moiety of MitoB reacts with H(2)O(2) to form a phenol product, MitoP. On injection into the fly, MitoB is rapidly taken up by mitochondria and the extent of its conversion to MitoP enables the quantification of H(2)O(2). To assess MitoB conversion to MitoP, the compounds are extracted and the MitoP/MitoB ratio is quantified by liquid chromatography-tandem mass spectrometry relative to deuterated internal standards. This method facilitates the investigation of mitochondrial H(2)O(2) in fly models of pathology and metabolic alteration, and it can also be extended to assess mitochondrial H(2)O(2) production in mouse and cell culture studies.