Published in

Wiley, Traffic, 8(10), p. 1084-1097, 2009

DOI: 10.1111/j.1600-0854.2009.00926.x

Wiley, Traffic

DOI: 10.1111/j.1600-0854.2009.0926.x

Links

Tools

Export citation

Search in Google Scholar

Binding of Plasma Membrane Lipids Recruits the Yeast Integral Membrane Protein Ist2 to the Cortical ER

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recruitment of cytosolic proteins to individual membranes is governed by a combination of protein-protein and protein-membrane interactions. Many proteins recognize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] at the cytosolic surface of the plasma membrane (PM). Here, we show that a protein-lipid interaction can also serve as a dominant signal for the sorting of integral membrane proteins. Interaction with phosphatidly-inositolphosphates (PIPs) at the PM is involved in the targeting of the polytopic yeast protein Ist2 to PM-associated domains of the cortical endoplasmic reticulum (ER). Moreover, binding of PI(4,5)P(2) at the PM functions as a dominant mechanism that targets other integral membrane proteins to PM-associated domains of the cortical ER. This sorting to a subdomain of the ER abolishes proteasomal degradation and trafficking along the classical secretory (sec) pathway. In combination with the localization of IST2 mRNA to the bud tip and other redundant signals in Ist2, binding of PIPs leads to efficient accumulation of Ist2 at domains of the cortical ER from where the protein may reach the PM independently of the function of the sec-pathway.