Published in

Wiley, Journal of Tissue Engineering and Regenerative Medicine, 2(5), p. 156-162, 2011

DOI: 10.1002/term.301

Links

Tools

Export citation

Search in Google Scholar

Surface modification of poly(ε-caprolactone) porous scaffolds using gelatin hydrogel as the tracheal replacement

Journal article published in 2011 by Chen-Huan Lin, Shan-Hui Hsu ORCID, Jang-Ming Su, Chien-Wen Chen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study evaluates the feasibility of poly(ε-caprolactone) as a tracheal replacement. To improve biocompatibility, the lumen was modified by gelatin hydrogel crosslinked with two different reagents, EDC and genipin. It was found that the choice of crosslinking agents could significantly affect human lung carcinoma cell proliferation. Genipin-crosslinked gelatin hydrogel had significantly better cell proliferation than EDC-crosslinked hydrogel. The study further investigated the performance of the PCL tube modified by genipin-crosslinked gelatin, using a rabbit tracheal implantation model with implants harvested and histologically examined. In vivo results showed that the PCL tube possessed suitable mechanical properties for resisting collapse during implantation. Additionally, PCL modified by genipin-crosslinked gelatin was found to suppress granulation tissue growth and prolong animal survival time in comparison with the original PCL tube. Genipin could be an effective treatment to reduce granulation tissue formation at the tracheal anastomoses.