Published in

Nature Research, Scientific Reports, 1(3), 2013

DOI: 10.1038/srep03009

Links

Tools

Export citation

Search in Google Scholar

Bioinspired TiO2 nanostructure films with special wettability and adhesion for droplets manipulation and patterning

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and chemical component, we described a facile one-step approach to construct large scale pinecone-like anatase TiO2 particles (ATP) film. The as-prepared ATP film exhibits excellent superamphiphilic property in air, changes to underwater superoleophobicity with good dynamical stability. In addition, erasable and rewritable patterned superamphiphobic ATP films or three-dimensional (3D) Janus surfaces were constructed for a versatile platform for microfluidic management and biomedical applications. In a proof-of-concept study, robust super-antiwetting feet for artificial anti-oil strider at the oil/water interface, novel superamphiphobic surface for repeatable oil/water separation, and multifunctional patterned superamphiphobic ATP template for cell, fluorecent probe and inorganic nanoparticles site-selective immobilization were demonstrated.