Published in

Wiley, The Plant Journal, 6(45), p. 871-883, 2006

DOI: 10.1111/j.1365-313x.2006.02652.x

Links

Tools

Export citation

Search in Google Scholar

Quantitative effects of vernalization onFLCandSOC1expression

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.