Published in

American Chemical Society, Journal of the American Chemical Society, 22(118), p. 5277-5283, 1996

DOI: 10.1021/ja953235x

Links

Tools

Export citation

Search in Google Scholar

Binding Energy of Al(C6H6)+from Analysis of Radiative Association Kinetics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Analysis of radiative association kinetics is a new and promising approach to estimating absolute metal−ligand bond energies for gas-phase metal ions. The method is illustrated using previously published data to estimate the binding energy of aluminum cation to benzene and several deuterium-substituted benzenes. A formulation of radiative association theory is applied which is valid at low association efficiency, and is independent of assumptions about the transition state. Photon emission rates from the complex are derived from McMahon-type analysis of collisional and radiative association data, and alternatively from ab initio calculations of IR radiative intensities, with excellent agreement for all four isotopomers. Analysis of the radiative association data gives a binding energy of 1.53 ± 0.10 eV (35.2 ± 2 kcal mol-1), which is concordant with, but has a smaller estimated uncertainty than, an interpolated thermochemical estimate based on data from other methods. For this system the semiquantitative “standard hydrocarbon” estimate of photon emission rate is a good approximation, but it is shown that in order to give valid predictions of the radiative association rate this scheme requires a correction for the fact that one of the reactants is an atomic ion.