Published in

IWA Publishing, Water Science and Technology, 11-12(44), p. 47-54

DOI: 10.2166/wst.2001.0808

Links

Tools

Export citation

Search in Google Scholar

Media Selection for Sustainable Phosphorus Removal in Subsurface Flow Constructed Wetlands

Journal article published in 2001 by H. Brix ORCID, Ca A. Arias, M. del Bubba
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sorption of phosphorus (P) to the bed sand medium is a major removal mechanism for P in subsurface flow constructed wetlands. Selecting a sand medium with a high P-sorption capacity is therefore important to obtain a sustained P-removal. The P-removal capacities of 13 Danish sands were evaluated and related to their physico-chemical characteristics. The P-removal properties of sands of different geographical origin varied considerably and the suitability of the sands for use as media in constructed reed beds thus differs. The P-sorption capacity of some sands would be used up after only a few months in full-scale systems, whereas that of others would subsist for a much longer time. The most important characteristic of the sands determining their P-sorption capacity was their Ca-content. Also the P-binding capacities of various artificial media were tested (light-expanded-clay-aggregates (LECA), crushed marble, diatomaceous earth, vermiculite and calcite). Particularly calcite and crushed marble were found to have high P-binding capacities. It is suggested that mixing one of these materials into the sand or gravel medium can significantly enhance the P-sorption capacity of the bed medium in a subsurface-flow constructed wetland system. It is also possible to construct a separate unit containing one of these artificial media. The media may then be replaced when the P-binding capacity is used up.