Published in

2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making

DOI: 10.1109/mcdm.2007.369409

Links

Tools

Export citation

Search in Google Scholar

Fuzzy Multi-Objective Mission Flight Planning in Unmanned Aerial Systems

Proceedings article published in 2007 by Paul Wu ORCID, Reece Clothier, Duncan Campbell, Rodney Walker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper discusses the development of a multi-objective mission flight planning algorithm for unmanned aerial system (UAS) operations within the National Airspace System (NAS). Existing methods for multi-objective planning are largely confined to two dimensional searches and/or acyclic graphs in deterministic environments; many are computationally infeasible for large state spaces. In this paper, a multi-objective fuzzy logic decision maker is used to augment the D* Lite graph search algorithm in finding a near optimal path. This not only enables evaluation and trade-off between multiple objectives when choosing a path in three dimensional space, but also allows for the modelling of data uncertainty. A case study scenario is developed to illustrate the performance of a number of different algorithms. It is shown that a fuzzy multi-objective mission flight planner provides a viable method for embedding human expert knowledge in a computationally feasible algorithm