Dissemin is shutting down on January 1st, 2025

Published in

EDP Sciences, Astronomy & Astrophysics, 1(504), p. 199-209, 2009

DOI: 10.1051/0004-6361/200912569

Links

Tools

Export citation

Search in Google Scholar

A deep look into the core of young clusters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Over the past years, the lambda-Orionis cluster has been a prime location for the study of young very low mass stars, substellar and isolated planetary mass objects and the determination of the initial mass function and other properties of low mass cluster members. In the continuity of our previous studies of young associations cores, we search for ultracool members and new multiple systems within the central 5.3' (~0.6pc) of the cluster. We obtained deep seeing limited J, Ks-band images of the 5.3' central part of the cluster with NTT/SofI and H-band images with CAHA/Omega2000. These images were complemented by multi-conjugate adaptive optics (MCAO) H and Ks images of the 1.5' central region of the lambda-Orionis cluster obtained with the prototype MCAO facility MAD at the VLT. The direct vicinity of the massive lambda-Ori O8III-star was probed using NACO/SDI at the VLT. Finally, we also retrieved Spitzer IRAC images of the same area and used archival Subaru Suprime-Cam and CFHT CFHT12K i-band images. We report the detection of 9 new member candidates selected from optical and near-IR color-color and color-magnitude diagrams and 7 previously known members. The high spatial resolution images resolve 3 new visual multiple systems. Two of them are most likely not members of the association. The third one is made of a brown dwarf candidate companion to the F8V star HD36861C. The simultaneous differential images allow us to rule out the presence of visual companions more massive than M>0.07Msun in the range 1-2.5", and M>0.25Msun in the range 0.5-2.5" Comment: accepted for publication in A&A