Published in

BioMed Central, BMC Bioinformatics, 1(11), 2010

DOI: 10.1186/1471-2105-11-93

Links

Tools

Export citation

Search in Google Scholar

Finding sRNA generative locales from high-throughput sequencing data with NiBLS

Journal article published in 2010 by Daniel MacLean ORCID, Vincent Moulton, David J. Studholme
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Next-generation sequencing technologies allow researchers to obtain millions of sequence reads in a single experiment. One important use of the technology is the sequencing of small non-coding regulatory RNAs and the identification of the genomic locales from which they originate. Currently, there is a paucity of methods for finding small RNA generative locales. Results We describe and implement an algorithm that can determine small RNA generative locales from high-throughput sequencing data. The algorithm creates a network, or graph, of the small RNAs by creating links between them depending on their proximity on the target genome. For each of the sub-networks in the resulting graph the clustering coefficient, a measure of the interconnectedness of the subnetwork, is used to identify the generative locales. We test the algorithm over a wide range of parameters using RFAM sequences as positive controls and demonstrate that the algorithm has good sensitivity and specificity in a range of Arabidopsis and mouse small RNA sequence sets and that the locales it generates are robust to differences in the choice of parameters. Conclusions NiBLS is a fast, reliable and sensitive method for determining small RNA locales in high-throughput sequence data that is generally applicable to all classes of small RNA.