Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 8(131), p. 2798-2799, 2009

DOI: 10.1021/ja8100227

Links

Tools

Export citation

Search in Google Scholar

PAMAM Dendrimers Undergo pH Responsive Conformational Changes without Swelling

Journal article published in 2009 by Yi Liu, Vyacheslav S. Bryantsev ORCID, Mamadou S. Diallo, William A. Goddard
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Atomistic molecular dynamics (MD) simulations of a G4-NH(2) PAMAM dendrimer were carried out in aqueous solution using explicit water molecules and counterions (with the Dreiding III force field optimized using quantum mechanics). Our simulations predict that the radius of gyration (R(g)) of the dendrimer changes little with pH from 21.1 A at pH approximately 10 (uncharged PAMAM) to 22.1 A at pH approximately 5 (charged with 126 protons), which agrees quantitatively with recent small angle neutron scattering (SANS) experiments (from 21.4 A at pH 10 to 21.5 A at pH 5). Even so we predict a dramatic change in the conformation. The ion pairing in the low pH form leads to a locally compact dense shell with an internal surface area only 37% of the high pH form with a dense core. This transformation from "dense core" at high pH to "dense shell" at low pH could facilitate the encapsulation and release of guest molecules (e.g., drugs) using pH as the trigger, making dendrimers a unique drug delivery vehicle.