Published in

Wiley, European Journal of Neuroscience, 2(25), p. 576-586, 2007

DOI: 10.1111/j.1460-9568.2007.05279.x

Links

Tools

Export citation

Search in Google Scholar

Binaral interaction and centrifugal input enhances spatial contrast in olfactory bulb activation

Journal article published in 2007 by Benjamin H. Singer ORCID, Soyoun Kim, Michal Zochowski
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We used paired-pulse odorant stimulation, with a conditioning stimulus delivered either ipsilateral or contralateral to a test stimulus, to unmask the effects of centrifugal feedback on olfactory bulb responses. In reptiles and mammals there are no direct connections between the paired olfactory bulbs, and thus all information transfer between the olfactory bulbs depends on feedback from retrobulbar structures. We measured odor-induced activity in the turtle olfactory bulb using a voltage-sensitive dye and a 464-element photodiode array, which allowed us to monitor the spatial variation in activation of the olfactory bulb. We found that both contralateral and ipsilateral conditioning stimuli evoked long-lasting inhibition of olfactory bulb activation. In contrast to previous studies using local field potential recording to monitor activity at a single site, we found that this inhibition increased contrast in the spatial patterning of activation over the dorsal surface of the olfactory bulb. Inhibition was also increased when different odorants were used as conditioning and test stimuli, suggesting a role for centrifugal feedback in olfactory discrimination. These results highlight the functional importance of centrifugal feedback and information processing in a broadly distributed olfactory network.