Published in

Springer Verlag, Immunogenetics, 10(65), p. 725-736

DOI: 10.1007/s00251-013-0719-4

Links

Tools

Export citation

Search in Google Scholar

Bimodal evolution of the killer cell Ig-like receptor (KIR) family in New World primates

Journal article published in 2013 by Luis F. Cadavid ORCID, Catalina Palacios, Juan S. Lugo
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The immunoglobulin-like receptor (KIR) gene family in New World primates (Platyrrhini) has been characterized only in the owl monkey (Aotus sp.). To gain a better understanding of the KIR system in Platyrrhini, we analyzed a KIR haplotype in Ateles geoffroyi, and sequenced KIR complementary DNAs (cDNAs) from other three Atelidae species, Ateles hybridus, Ateles belzebuth, and Lagothrix lagotricha. Atelidae expressed a variable set of activating and inhibitory KIRs that diversified independently from their Catarrhini counterparts. They had a unique mechanism to generate activating receptors from inhibitory ones, involving a single nucleotide deletion in exon 7 and a change in the donor splice site of intron 7. The A. geoffroyi haplotype contained at least six gene models including a pseudogene, two coding inhibitory receptors, and three coding activating receptors. The centromeric region was in a tail-to-tail orientation with respect to the telomeric region. The owl monkey KIR haplotype shared this organization, and in phylogenetic trees, the centromeric genes clustered together with those of A. geoffroyi, whereas their telomeric genes clustered independently. KIR cDNAs from the other Atelidae species conformed to this pattern. Signatures of positive selection were found in residues predicted to interact with the major histocompatibility complex. Such signatures, however, primarily explained variability between paralogous genes but not between alleles in a locus. Atelidae, therefore, has expanded the KIR family in a bimodal fashion, where an inverted centromeric region has remained relatively conserved and the telomeric region has diversified by a rapid process of gene duplication and divergence, likely favored by positive selection for ligand binding.