Elsevier, The American Journal of Pathology, 6(166), p. 1637-1645, 2005
DOI: 10.1016/s0002-9440(10)62474-1
Full text: Download
Pulmonary and serum levels of tumor necrosis factor-alpha (TNF-alpha), are elevated in many lung diseases, causing local inflammation, fever, and multiorgan, including hepatic, dysfunction. Cellular responses to TNF-alpha are determined by recruitment of specific proteins to intracellular receptor signaling complexes. One of these proteins, TNF receptor-associated factor 1 (TRAF1), is highly regulated in pulmonary cells. To determine the effect of reduced pulmonary TRAF1 expression, TRAF1-null (-/-) and control, BALB/c (wild-type), mice were treated intratracheally, intraperitoneally, or intravenously, with TNF-alpha. Despite relatively mild lung injury, intratracheal TNF-alpha-treated TRAF1-/- mice exhibited marked liver injury with an approximate fivefold increase in serum liver enzyme levels as compared to wild-type mice. In addition, serum TNF-alpha levels were strikingly elevated in TRAF1-/- mice. Pretreatment with neutralizing anti-TNFRI antibody significantly reduced liver injury and serum TNF-alpha. Cells isolated by bronchoalveolar lavage from intratracheally treated TRAF1-/- mice produced more TNF-alpha than cells from treated wild-type mice, suggesting that lung cells contributed to elevated serum TNF-alpha. These studies suggest that TRAF1 provides negative feedback for TNF-alpha synthesis and limits TNFRI-mediated systemic effects of TNF-alpha originating in the lung.