Published in

Elsevier, Atmospheric Environment, (77), p. 544-547, 2013

DOI: 10.1016/j.atmosenv.2013.05.058

Links

Tools

Export citation

Search in Google Scholar

The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m−2 d−1, and improved nitrate removal (P < 0.001). The presence of Phalaris arundinacea within a given plant community increased the N2O emission (P < 0.001). The presence of Rumex japonicas had no influence on the N2O emissions (P > 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.