Published in

Springer Verlag, Irrigation Science, 5(33), p. 357-366

DOI: 10.1007/s00271-015-0471-7

Links

Tools

Export citation

Search in Google Scholar

Using sap flow measurements to estimate net assimilation in olive trees under different irrigation regimes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The measurement of bulk net assimilation (A) in fruit tree species is hindered by the need for sophisticated and complex instrumentation. The aim of this study is to present a simple alternative for estimating A from sap flow measurements and meteorological records. The proposed method was tested in a mature hedgerow olive orchard of 22.2 ha. Within the orchard, an irrigation experiment was established in a small plot including three treatments: a full irrigated control (CI), regulated deficit irrigation (DI) and a treatment mimicking customary orchard irrigation management (FI). Determinations of sap flow, water potential (Ψ) and trunk diameter variations (TDV) were conducted in the three treatments for 3 years. Also, measurements of net ecosystem exchange (NEE) were performed with an eddy covariance system in the centre of the orchard for the first season. The validity of the method was supported by the fact that estimates of A were consistent with both the measured values of NEE and published data regarding the same species under similar environmental and management conditions. Also, differences in A between irrigation treatments were generally in agreement with irrigation applied, transpiration (E p ), Ψ and TDV. It is concluded that the proposed sap flow-based method represents a user-friendly approach to estimate A at the canopy level with potential to study the effects of DI on biomass accumulation.