Published in

Elsevier, Gondwana Research, 1-2(14), p. 159-174, 2008

DOI: 10.1016/j.gr.2007.10.006

Links

Tools

Export citation

Search in Google Scholar

Evolution of the composition of seawater through geologic time, and its influence on the evolution of life

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The redox state of the surface environment of the early Earth is still controversial, and a detailed and quantitative estimate is still lacking. We carried out in-situ analyses of major, trace, and rare-earth elements of carbonate minerals in rocks with primary sedimentary structures in shallow and deep sea-deposits, in order to eliminate secondary carbonate and contamination of detrital materials, and to estimate the redox condition of seawater through time. Based on the Ce content and anomalies of the carbonate minerals at given parameters of atmospheric CO 2 content (pCO 2) and Ca content of seawater, we calculated the oxygen contents of shallow and deep seawater, respectively. The results show that the oxygen content of the deep sea was low and constant until at least 1.9 Ga. The oxygen content of shallow seawater increased after 2.7 Ga, but fluctuated. It became quite high at 2.5 and 2.3 Ga, but eventually increased after the Phanerozoic. In addition, the calculation of a high pCO 2 condition shows that seawater was more oxic even in the Archean than at present, suggesting a relatively low pCO 2 through geologic time. Our detailed calculations from compositions of carbonate minerals in Three Gorge area, south China show a low oxygen content of seawater after the Snowball Earth until the late Ediacaran, an increase in the late Ediacaran, and a significant decrease around the Precambrian–Cambrian and Nemakit/Daldynian–Tommotian boundaries. These variations were possibly caused by global regression and dissolution of methane hydrates.