Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Medical Imaging, 2(29), p. 559-569, 2010

DOI: 10.1109/tmi.2009.2038575

Links

Tools

Export citation

Search in Google Scholar

Quantitative Analysis of Pulmonary Emphysema Using Local Binary Patterns

Journal article published in 2010 by Lauge Srensen, Lauge Sørensen, Saher B. Shaker, Marleen de Bruijne ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We aim at improving quantitative measures of emphysema in computed tomography (CT) images of the lungs. Current standard measures, such as the relative area of emphysema (RA), rely on a single intensity threshold on individual pixels, thus ignoring any interrelations between pixels. Texture analysis allows for a much richer representation that also takes the local structure around pixels into account. This paper presents a texture classification-based system for emphysema quantification in CT images. Measures of emphysema severity are obtained by fusing pixel posterior probabilities output by a classifier. Local binary patterns (LBP) are used as texture features, and joint LBP and intensity histograms are used for characterizing regions of interest (ROIs). Classification is then performed using a k nearest neighbor classifier with a histogram dissimilarity measure as distance. A 95.2% classification accuracy was achieved on a set of 168 manually annotated ROIs, comprising the three classes: normal tissue, centrilobular emphysema, and paraseptal emphysema. The measured emphysema severity was in good agreement with a pulmonary function test (PFT) achieving correlation coefficients of up to |r| = 0.79 in 39 subjects. The results were compared to RA and to a Gaussian filter bank, and the texture-based measures correlated significantly better with PFT than did RA.