Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 5(75), 2007

DOI: 10.1103/physreve.75.051408

Links

Tools

Export citation

Search in Google Scholar

Dipolar structures in magnetite ferrofluids studied with small angle neutron scattering with and without applied magnetic field

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe3O4) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg, Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.