Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Geoscience and Remote Sensing, 9(49), p. 3249-3272, 2011

DOI: 10.1109/tgrs.2011.2158438

Links

Tools

Export citation

Search in Google Scholar

MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 1-D variational system has been developed to pro- cess spaceborne measurements. It is an iterative physical inver- sion system that finds a consistent geophysical solution to fit all radiometric measurements simultaneously. One of the particular- ities of the system is its applicability in cloudy and precipitating conditions. Although valid, in principle, for all sensors for which the radiative transfer model applies, it has only been tested for passive microwave sensors to date. The Microwave Integrated Retrieval System (MiRS) inverts the radiative transfer equation by finding radiometrically appropriate profiles of temperature, moisture, liquid cloud, and hydrometeors, as well as the surface emissivity spectrum and skin temperature. The inclusion of the emissivity spectrum in the state vector makes the system applica- ble globally, with the only differences between land, ocean, sea ice, and snow backgrounds residing in the covariance matrix chosen to spectrally constrain the emissivity. Similarly, the inclusion of the cloud and hydrometeor parameters within the inverted state vec- tor makes the assimilation/inversion of cloudy and rainy radiances possible, and therefore, it provides an all-weather capability to the system. Furthermore, MiRS is highly flexible, and it could be used as a retrieval tool (independent of numerical weather prediction) or as an assimilation system when combined with a forecast field used as a first guess and/or background. In the MiRS, the funda- mental products are inverted first and then are interpreted into secondary or derived products such as sea ice concentration, snow water equivalent (based on the retrieved emissivity) rainfall rate, total precipitable water, integrated cloud liquid amount, and ice water path (based on the retrieved atmospheric and hydrometeor products). The MiRS system was implemented operationally at the U.S. National Oceanic and Atmospheric Administration (NOAA) in 2007 for the NOAA-18 satellite. Since then, it has been extended to