Published in

Oxford University Press (OUP), Journal of Heredity, 5(98), p. 474-484

DOI: 10.1093/jhered/esm053

Links

Tools

Export citation

Search in Google Scholar

A Cytogenetically Characterized, Genome-Anchored 10-Mb BAC Set and CGH Array for the Domestic Dog

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The generation of a 7.5x dog genome assembly provides exciting new opportunities to interpret tumor-associated chromosome aberrations at the biological level. We present a genomic microarray for array comparative genomic hybridization (aCGH) analysis in the dog, comprising 275 bacterial artificial chromosome (BAC) clones spaced at intervals of approximately 10 Mb. Each clone has been positioned accurately within the genome assembly and assigned to a unique chromosome location by fluorescence in situ hybridization (FISH) analysis, both individually and as chromosome-specific BAC pools. The microarray also contains clones representing the dog orthologues of 31 genes implicated in human cancers. FISH analysis of the 10-Mb BAC clone set indicated excellent coverage of each dog chromosome by the genome assembly. The order of clones was consistent with the assembly, but the cytogenetic intervals between clones were variable. We demonstrate the application of the BAC array for aCGH analysis to identify both whole and partial chromosome imbalances using a canine histiocytic sarcoma case. Using BAC clones selected from the array as probes, multicolor FISH analysis was used to further characterize these imbalances, revealing numerous structural chromosome rearrangements. We outline the value of a combined aCGH/FISH approach, together with a well-annotated dog genome assembly, in canine and comparative cancer studies.