Published in

Advanced Biomedical and Clinical Diagnostic Systems VII

DOI: 10.1117/12.809028

Links

Tools

Export citation

Search in Google Scholar

Measurement of the local muscular metabolism by time-domain near infrared spectroscopy during knee flex-extension induced by functional electrical stimulation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a preliminary study that combines functional electrical stimulation and time-domain near infrared spectroscopy for a quantitative measurement of the local muscular metabolism during rehabilitation of post-acute stroke patients. Seven healthy subjects and nine post-acute stroke patients underwent a protocol of knee flex-extension of the quadriceps induced by functional electrical stimulation. During the protocol time-domain near infrared spectroscopy measurement were performed on both left and right muscle. Hemodynamic parameters (concentration of oxy- and deoxy-genated hemoglobin) during baseline did not show any significant differences between healthy subject and patients, while functional performances (knee angle amplitude) were distinctly different. Nevertheless, even if their clinical histories were noticeably different, there was no differentiation among functional performances of patients. On the basis of the hemodynamic parameters measured during the recovery phase, instead, it was possible to identify two classes of patients showing a metabolic trend similar or very different to the one obtained by healthy subjects. The presented results suggest that the combination of functional and metabolic information can give an additional tool to the clinicians in the evaluation of the rehabilitation in post-acute stroke patients.