Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Solid State Chemistry, 9(184), p. 2610-2614

DOI: 10.1016/j.jssc.2011.07.003

Links

Tools

Export citation

Search in Google Scholar

Surface analysis of mixed-conducting ferrite membranes by the conversion-electron Mössbauer spectroscopy

Journal article published in 2011 by J. C. Waerenborgh ORCID, E. V. Tsipis ORCID, A. A. Yaremchenko, V. V. Kharton
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Conversion-electron Moessbauer spectroscopy analysis of iron surface states in the dense ceramic membranes made of {sup 57}Fe-enriched SrFe{sub 0.7}Al{sub 0.3}O{sub 3-{delta}} perovskite, shows no traces of reductive decomposition or carbide formation in the interfacial layers after operation under air/CH{sub 4} gradient at 1173 K, within the limits of experimental uncertainty. The predominant trivalent state of iron cations at the membrane permeate-side surface exposed to flowing dry methane provides evidence of the kinetic stabilization mechanism, which is only possible due to slow oxygen-exchange kinetics and enables long-term operation of the ferrite-based ceramic reactors for natural gas conversion. At the membrane feed-side surface exposed to air, the fractions of Fe{sup 4+} and Fe{sup 3+} are close to those in the powder equilibrated at atmospheric oxygen pressure, suggesting that the exchange limitations to oxygen transport are essentially localized at the partially reduced surface. - Graphical Abstract: Conversion-electron Moessbauer spectroscopy analysis of dense ceramic membranes made of {sup 57}Fe-enriched SrFe{sub 0.7}Al{sub 0.3}O{sub 3-{delta}} perovskite, shows no reductive decomposition in thin interfacial layers after testing under air/CH{sub 4} gradient, enabling stable operation of the ferrite-based ceramic reactors for partial oxidation of methane. Highlights: > Conversion-electron Moessbauer spectroscopy is used for mixed-conducting membranes. > No decomposition is detected in the membrane surface layers under air/CH{sub 4} gradient. > Due to kinetic stabilization, Fe{sup 3+} states prevail at the surface exposed to methane. > Transmission Moessbauer spectra show perovskite decomposition on equlibration in CH{sub 4}. > Ferrite-based ceramic reactors can stably operate under air/CH{sub 4} gradient.