Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry C, 32(119), p. 18248-18256, 2015

DOI: 10.1021/acs.jpcc.5b04310

Links

Tools

Export citation

Search in Google Scholar

Mechanistic Insights of Ethanol Steam Reforming over Ni-CeOx(111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have studied the reaction of ethanol and water over Ni-CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni-CeO2-x(111) at varying Ce3+ concentrations (CeO1.8-2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni0 is the active phase leading to both the C-C and C-H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni3C phase that formed prior to the formation of coke. At temperatures above 600 K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal-support interaction between nickel and ceria that facilitates oxygen transfer.