Published in

Nature Research, Nature Communications, 1(4), 2013

DOI: 10.1038/ncomms3034

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe recent identification of the mitochondrial Ca2+ uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca2+ uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca2+ levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca2+, resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca2+ overload when cytoplasmic Ca2+ levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca2+ and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca2+ uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.