Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Experimental Mechanics, 2(38), p. 73-78

DOI: 10.1007/bf02321647

Links

Tools

Export citation

Search in Google Scholar

Transient temperature measurement using embedded thermocouples

Journal article published in 1998 by D. Rittel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The response time of thermocouples is generally considered to be a limiting factor when transient temperature changes need to be assessed in solids. As an example, transient temperature changes which develop during dynamic straining of materials, adiabatic shear band formation, dynamic fracture and related fields are often investigated using sophisticated noncontact measurement techniques such as infrared detectors. In these phenomena, the time scale is of the order of the microsecond. In this paper, the authors revisit the application of thermocouples to such measurements using small embedded thermocouples (ETC). Experiments with dynamically loaded polymeric disks (characteristic strain rate of 103 s–1) show that the thermocouples record transient temperatures with a short typical rise time of 10 s as a result of the conversion of plastic deformation into heat. This observation is corroborated by the solution of the temperature distribution in a sphere subject to constant surface temperature which predicts the same fast reaction. Specifically, considering a sphere which is representative of the sensing bead, the average temperature is shown to rise in a few microseconds. These theoretical results can be used to deconvolve the experimental results with respect to a calculated impulse response of the sensor to recover the actual temperature variations. The results show that small thermocouples can be embedded to yield useful information about the transient temperature evolution in a solid. This technique is easy to use and provides an important complement to other noncontact techniques.