Published in

Elsevier, BBA - Biomembranes, 10(1778), p. 2091-2096, 2008

DOI: 10.1016/j.bbamem.2008.04.001

Links

Tools

Export citation

Search in Google Scholar

The effects of lipids on the structure of the eukaryotic cytolysin equinatoxin II: A synchrotron radiation circular dichroism spectroscopic study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Synchrotron radiation circular dichroism (SRCD) spectroscopy studies of the eukaryotic pore-forming protein equinatoxin II (EqtII) were carried out in solution and in the presence of micelles or small unilamellar vesicles (SUV) of different lipid composition. The SRCD structural data was correlated with calcein leakage from SUV and with partitioning of EqtII to liposomes, and micelles, according to haemolysis assays. The structure of EqtII in water and dodecylphosphocholine micelles as determined by SRCD was similar to the values calculated from crystal and solution structures of the protein, and no changes were observed with the addition of sphingomyelin (SM). SM is required to trigger pore formation in biological and model membranes, but our results suggest that SM alone is not sufficient to trigger dissociation of the N-terminal helix and further structural rearrangements required to produce a pore. Significant changes in conformation of EqtII were detected with unsaturated phospholipid (DOPC) vesicles when SM was added, but not with saturated phospholipids (DMPC), which suggests that not only is membrane curvature important, but also the fluidity of the bilayer. The SRCD data indicated that the EqtII structure in the presence of DOPC:SM SUV represents the 'bound' state and the 'free' state is represented by spectra for DOPC or DOPC:Chol vesicles, which correlates with the high lytic activity for SUV of DOPC:SM. The SRCD results provide insight into the lipid requirements for structural rearrangements associated with EqtII toxicity and lysis.