Published in

Elsevier, International Journal of Pharmaceutics, 1-2(466), p. 400-408

DOI: 10.1016/j.ijpharm.2014.03.034

Links

Tools

Export citation

Search in Google Scholar

Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using 'prebiotics', which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a 'synbiotic'. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate-chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6h, but with a triphasic release pattern giving further release over 288h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0±0.3logCFU/mL cells in acid, an improvement over alginate-chitosan microencapsulation of 1.4logCFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.