Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Chemistry, 4(1), p. 310-315, 2009

DOI: 10.1038/nchem.249

Links

Tools

Export citation

Search in Google Scholar

Designer magnetic superatoms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The quantum states in metal clusters are grouped into bunches of close-lying eigenvalues, termed electronic shells, similar to those of atoms. Filling of the electronic shells with paired electrons results in local minima in energy to give stable species called magic clusters. This led to the realization that selected clusters mimic chemical properties of elemental atoms on the periodic table and can be classified as superatoms. So far the work on superatoms has focused on non-magnetic species. Here we propose a framework for magnetic superatoms by invoking systems that have both localized and delocalized electronic states, in which localized electrons stabilize magnetic moments and filled nearly-free electron shells lead to stable species. An isolated VCs(8) and a ligated MnAu(24)(SH)(18) are shown to be such magnetic superatoms. The magnetic superatoms' assemblies could be ideal for molecular electronic devices, as the coupling could be altered by charging or weak fields.