Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 5(19), p. 5965-5980, 2014

DOI: 10.3390/molecules19055965

Links

Tools

Export citation

Search in Google Scholar

Design, Synthesis, Characterization of Novel Ruthenium(II) Catalysts: Highly Efficient and Selective Hydrogenation of Cinnamaldehyde to (E)-3-Phenylprop-2-en-1-ol

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this contribution, two novel supported and non-supported ruthenium(II) complexes of type [RuCl2(dppme)(NN)] where [dppme is H2C=C(CH2PPh2)2 and NN is N1-(3-(trimethoxysilyl)propyl)ethane-1,2-diamine] were prepared. The NN co-ligand caused release of one of the dppme ligands from [RuCl2(dppme)2] precursor to yield complex 1. The process of substitution of dppme by NN was monitored by 31P{1H}-NMR. Taking advantage of the presence of trimethoxysilane group in the backbone of complex 1, polysiloxane xerogel counterpart, X1, was prepared via sol-gel immobilization using tetraethoxysilane as cross-linker. Both complexes 1 and X1 have been characterized via elemental analysis, CV and a number of spectroscopic techniques including FT-IR, 1H-, 13C-, and 31P-NMR, and mass spectrometry. Importantly, carbonyl selective hydrogenation was successfully accomplished under mild conditions using complex 1 as a homogenous catalyst and X1 as a heterogeneous catalyst, respectively.