Published in

American Chemical Society, Journal of Medicinal Chemistry, 12(54), p. 4077-4091, 2011

DOI: 10.1021/jm200094h

Links

Tools

Export citation

Search in Google Scholar

Design, Synthesis, and Cytotoxic Evaluation of Acyl Derivatives of 3-Aminonaphtho[2,3-b]thiophene-4,9-dione, a Quinone-Based System

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of 3-acyl derivatives of the dihydronaphtho[2,3-b]thiophen-4,9-dione system were studied with respect to cytotoxicity and topoisomerase II inhibitory activity. These analogues were designed as electron-deficient anthraquinone analogues with potential intercalation ability. Derivatives 3-(diethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11m) and 3-(2-(dimethylamino)ethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11p) showed a high efficacy in cell lines that were highly resistant to treatment with doxorubicin, such as MDA-MB435 (melanoma), IGROV (ovarian), and SF-295 (glioblastoma) human cell lines. Both compounds inhibit topoisomerase II mediated relaxation of DNA, while only 11p incites arrest at the S phase in Caco-2 cells, inducing a delay of cell cycle progression and an increase of cell differentiation. The ability of these derivatives to modulate small heat shock proteins and cardiotoxicy effects was also explored. In addition, the DNA-binding properties of these compounds were investigated and discussed.