Published in

American Chemical Society, Journal of Medicinal Chemistry, 8(50), p. 1787-1798, 2007

DOI: 10.1021/jm0612158

Links

Tools

Export citation

Search in Google Scholar

Design, Synthesis, and Cytotoxic Evaluation of a New Series of 3-Substituted Spiro[(dihydropyrazine-2,5-dione)-6,3‘-(2‘,3‘-dihydrothieno[2,3-b]naphtho-4‘,9‘-dione)] Derivatives

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of 3-substituted spiro[(dihydropyrazine-2,5-dione)-6,3'-(2',3'-dihydrothieno[2,3-b]naphtho-4',9'-dione)] derivatives were prepared using an easy synthetic route via condensation of the 3-amino-3-(ethoxycarbonyl)-2,3-dihydrothieno[2,3-b]naphtho-4,9-dione system and amino acids followed by intramolecular lactamization. Amino acids containing alkyl and aryl, linear and cyclic, polar and apolar, and basic and acid residues were incorporated. Evaluation of these analogues against the MCF-7 human breast carcinoma and SW 620 human colon carcinoma cell lines revealed, for the 3S,3'R isomers derived from Pro (7a), Cys (11a), and Met (12a) and the 3R,3'S isomer derived from D-Pro (7c), a cytotoxic potency comparable to or greater than that of doxorubicin. Some of these selected analogues were potent cytotoxic agents in several other sensible and resistant human solid tumor cell lines and may be able to circumvent the multiple-drug-resistance mechanism. In particular, only a partial cross-resistance to the compounds 7, 11, and 12 was observed in selected tumor cell sublines known to be resistant to doxorubicin (MCF-7/Dx and A2780/Dx), whereas a very low level of cross-resistance to compounds 7 and 11 was found in a tumor cell subline selected for resistance to cisplatin (A2780/DDP). In addition, the topoisomerase II inhibition activity and DNA-binding properties were investigated.