Published in

Elsevier, Bioorganic and Medicinal Chemistry, 17(22), p. 4667-4676

DOI: 10.1016/j.bmc.2014.07.017

Links

Tools

Export citation

Search in Google Scholar

Design, stereoselective synthesis, configurational stability and biological activity of 7-chloro-9-(furan-3-yl)-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chiral 5-arylbenzothiadiazine derivatives have recently attracted particular attention because they exhibit an interesting pharmacological activity as AMPA receptor (AMPAr) positive modulators. However, investigations on their configurational stability suggest a rapid enantiomerization in physiological conditions. In order to enhance configurational stability, preserving AMPAr activity, we have designed the novel compound (R,S)-7-chloro-9-(furan-3-yl)-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide bearing a pyrrolo moiety coupled with the 5-(furan-3-yl) substituent on benzothiadiazine core. A stereoselective synthesis was projected to obtain single enantiomer of the latter compound. Absolute configuration was assigned by X-ray crystal structure. Patch clamp experiments evaluating the activity of single enantiomers as AMPAr positive allosteric modulator showed that R stereoisomer is the active component. Molecular modeling studies were performed to explain biological results. An on-column stopped-flow bidimensional recycling HPLC procedure was applied to obtain on a large scale the active enantiomer with enantiomeric enrichment starting from the racemic mixture of the compound.