Dissemin is shutting down on January 1st, 2025

Published in

Portland Press, Biochemical Journal, 2(311), p. 393-399, 1995

DOI: 10.1042/bj3110393

Links

Tools

Export citation

Search in Google Scholar

Transforming growth factor-β 1 increases internalization of basic fibroblast growth factor by smooth muscle cells: implication of cell-surface heparan sulphate proteoglycan endocytosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Basic fibroblast growth factor (bFGF) was internalized by smooth muscle cells (SMC) from pig aorta. Correlation between heparin inhibition of binding and late internalization (8 h) implicated low-affinity sites in bFGF internalization. Transforming growth factor-beta 1 (TGF-beta 1) induced a 38% increase in bFGF internalized between 4 and 8 h. While bFGF and/or TGF-beta 1 enhanced cell-surface proteoglycan synthesis, 35S-labelled proteoglycans of the extracellular matrix (ECM) were not affected. This might be explained by the different turnover rates displayed by the two populations of proteoglycans. Although bFGF and/or TGF-beta 1 induced a similar stimulation in cell-surface chondroitin sulphate/dermatan sulphate and heparan sulphate (HS) proteoglycan synthesis, only the turnover of HS proteoglycans was increased. Twice as much HS proteoglycan was internalized in the presence of TGF-beta 1 or bFGF. Furthermore, TGF-beta 1 induced a 43 +/- 12% increase in HS proteoglycan internalized in the presence of bFGF with a parallel 38% increase in bFGF internalization. Overall, the results indicated that bFGF bound to two HS proteoglycan populations. bFGF storage (70% of bFGF bound to SMC) was not affected by TGF-beta 1 under our conditions and involved ECM proteoglycans characterized by a low turnover. bFGF internalization up-regulated by TGF-beta 1 involved cell-surface HS proteoglycan characterized by a high turnover.