Published in

SAGE Publications, International Journal of Distributed Sensor Networks, 5(10), p. 971587, 2014

DOI: 10.1155/2014/971587

Links

Tools

Export citation

Search in Google Scholar

Estimating Energy Savings in Smart Street Lighting by Using an Adaptive Control System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The driving force behind the smart city initiative is to offer better, more specialized services which can improve the quality of life of the citizens while promoting sustainability. To achieve both of these apparently competing goals, services must be increasingly autonomous and continuously adaptive to changes in their environment and the information coming from other services. In this paper we focus on smart lighting, a relevant application domain for which we propose an intelligent street light control system based on adaptive behavior rules. We evaluate our approach by using a simulator which combines wireless sensor networks and belief-desire-intention (BDI) agents to enable a precise simulation of both the city infrastructure and the adaptive behavior that it implements. The results reveal energy savings of close to 35% when the lighting system implements an adaptive behavior as opposed to a rigid, predefined behavior.