Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Methods, 12(10), p. 1246-1253, 2013

DOI: 10.1038/nmeth.2703

Links

Tools

Export citation

Search in Google Scholar

Quantifying protein interaction dynamics by SWATH mass spectrometry: Application to the 14-3-3 system

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein complexes and protein interaction networks are essential mediators of most biological functions. Complexes supporting transient functions such as signal transduction processes are frequently subject to dynamic remodeling. Currently, the majority of studies on the composition of protein complexes are carried out by affinity purification and mass spectrometry (AP-MS) and present a static view of the system. For a better understanding of inherently dynamic biological processes, methods to reliably quantify temporal changes of protein interaction networks are essential. Here we used affinity purification combined with sequential window acquisition of all theoretical spectra (AP-SWATH) mass spectrometry to study the dynamics of the 14-3-3β scaffold protein interactome after stimulation of the insulin-PI3K-AKT pathway. The consistent and reproducible quantification of 1,967 proteins across all stimulation time points provided insights into the 14-3-3β interactome and its dynamic changes following IGF1 stimulation. We therefore establish AP-SWATH as a tool to quantify dynamic changes in protein-complex interaction networks.