Published in

Wiley, ELECTROPHORESIS, 24(27), p. 4935-4942, 2006

DOI: 10.1002/elps.200600137

Links

Tools

Export citation

Search in Google Scholar

Microchip free-flow electrophoresis on glass substrate using laser-printing toner as structural material

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, a microfluidic free-flow electrophoresis device, obtained by thermal toner transferring on glass substrate, is presented. A microdevice can be manufactured in only 1 h. The layout of the microdevice was designed in order to improve the fluidic and electrical characteristics. The separation channel is 8 microm deep and presents an internal volume of 1.42 microL. The deleterious electrolysis effects were overcome by using a system that isolates the electrolysis products from the separation channel. The Joule heating dissipation in the separation channel was found to be very efficient up to a current density of 8.83 mA/mm(2) that corresponds to a power dissipation per unit volume of running electrolyte of 172 mW/microL. Promising results were obtained in the evaluation of the microdevices for the separation of ionic dyes. The microfluidic device can be used for a continuous sample pretreatment step for micro total analysis system.