Published in

Wiley, Global Change Biology, 10(10), p. 1707-1723, 2004

DOI: 10.1111/j.1365-2486.2004.00846.x

Links

Tools

Export citation

Search in Google Scholar

Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effects of harvest on European forest net ecosystem exchange (NEE) of carbon and its photosynthetic and respiratory components (GPP (gross primary production) and TER (total ecosystem respiration)) were examined by comparing four pairs of mature/harvested sites in Europe via a combination of eddy covariance measurements and empirical modeling. Three of the comparisons represented high coniferous forestry (spruce in Britain, and pines in Finland and France), while a coppice-with-standard oak plantation was examined in Italy.While every comparison revealed that harvesting converted a mature forest carbon sink into a carbon source of similar magnitude, the mechanisms by which this occurred were very different according to species or management practice. In Britain, Finland, and France the annual sink (source) strength for mature (clear-cut) stands was estimated at 496 (112), 138 (239), and 222 (225) g C m−2, respectively, with 381 (427) g C m−2 for the mature (coppiced) stand in Italy. In all three cases of high forestry in Britain, Finland, and France, clear-cutting crippled the photosynthetic capacity of the ecosystem – with mature (clear-cut) GPP of 1970 (988), 1010 (363), and 1600 (602) g C m−2– and also reduced ecosystem respiration to a lesser degree – TER of 1385 (1100), 839 (603), and 1415 (878) g C m−2, respectively. By contrast, harvesting of the coppice oak system provoked a burst in respiration – with mature (clear-cut) TER estimated at 1160 (2220) gC m−2– which endured for the 3 years sampled postharvest. The harvest disturbance also reduced GPP in the coppice system – with mature (clear-cut) GPP of 1600 (1420) g C m−2– but to a lesser extent than in the coniferous forests, and with near-complete recovery within a few years. Understanding the effects of harvest on the carbon balance of European forest systems is a necessary step towards characterizing carbon exchange for timberlands on large scales.