Published in

Elsevier, Journal of Molecular and Cellular Cardiology, 4(48), p. 649-652

DOI: 10.1016/j.yjmcc.2010.01.013

Links

Tools

Export citation

Search in Google Scholar

Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: Role of nitric oxide

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biglycan, a proteoglycan component of extracellular matrix, has been suspected to contribute to the development of atherosclerosis, but overexpression of biglycan in transgenic mice has been shown to induce cardioprotective genes including nitric oxide (NO) synthases in the heart. Therefore, here we hypothesized if exogenous administration of biglycan exerts cytoprotection. Primary cardiomyocytes from neonatal rats were subjected to 150 min hypoxia and 2 h reoxygenation. Mortality of cardiomyocytes was dose-dependently attenuated by pretreatment with 1-100 nM biglycan. Biglycan enhanced eNOS mRNA and protein, and significantly increased NO content of cardiomyocytes. The NO synthase inhibitor l-nitro-arginine-methyl-ester significantly attenuated the cytoprotective effect of biglycan. This is the first demonstration that biglycan leads to cytoprotection against hypoxia/reoxygenation injury, and that this phenomenon is partially mediated by an NO-dependent mechanism.