Published in

Optica, Optics Express, 27(19), p. 26850, 2011

DOI: 10.1364/oe.19.026850

Links

Tools

Export citation

Search in Google Scholar

Microcavity enhanced optical absorption in subwavelength slits

Journal article published in 2011 by Changjun Min, Liu Yang, Georgios Veronis
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We introduce a compact submicron structure consisting of multiple optical microcavities at both the entrance and exit sides of a subwavelength plasmonic slit filled with an absorbing material. We show that such microcavity structures at the entrance side of the slit can greatly enhance the coupling of the incident light into the slit, by improving the impedance matching between the incident plane wave and the slit mode. In addition, the microcavity structures can also increase the reflectivities at both sides of the slit, and therefore the resonant field enhancement. Thus, such structures can greatly enhance the absorption cross section of the slit. An optimized submicron structure consisting of two microcavities at each of the entrance and exit sides of the slit leads to ~9.3 times absorption enhancement at the optical communication wavelength compared to an optimized slit without microcavities.