Published in

Elsevier, Tectonophysics, (650), p. 104-112, 2015

DOI: 10.1016/j.tecto.2014.05.009

Links

Tools

Export citation

Search in Google Scholar

Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Previous studies have shown that the eastern North China Craton (NCC) lost its ancient lithospheric mantle root during the Phanerozoic. The temporal sequence, spatial extent, and cause of the lithospheric thinning, however, continue to be debated. Here we report olivine compositions, whole-rock Re-Os isotopic systematics, and platinum-group element abundances of small (< 2 cm in maximum dimension) mantle peridotite xenoliths from two basalt localities from the eastern NCC, Wudi (Cenozoic) and Fuxin (Cretaceous). These locations lie far (~ 150-200 km) from the Tan-Lu fault, which has been linked to lithospheric replacement in the eastern NCC. Peridotites at both locations have fertile to moderately refractory compositions (Fo < 91.5), while highly refractory (Fo > 92) lithospheric mantle is largely absent. Osmium isotopic data suggest the Wudi peridotites experienced melt depletion primarily during the Paleoproterozoic (~ 1.8 Ga), although an Archean Os model age for one xenolith indicates incorporation of a minor component of Archean lithospheric mantle. These data suggest that a previously unrecognized Paleoproterozoic orogenic event removed and replaced the original Archean lithospheric mantle beneath the sedimentary basin at the southern edge of the Bohai Sea. By contrast, the Fuxin peridotites, entrained in Cretaceous basalts that crop out along the northern edge of the eastern NCC, document the coexistence of both ancient (≥ 2.3 Ga) and modern lithospheric mantle components. Here, the original Late Archean-Early Paleoproterozoic lithospheric mantle was, at least partially, removed and replaced prior to 100 Ma. Combined with literature data, our results show that removal of the original Archean lithosphere occurred within Proterozoic collisional orogens, and that replacement of Precambrian lithosphere during the Mesozoic may have been spatially associated with the collisional boundaries and the strike-slip Tan-Lu fault, as well as the onset of Paleo-Pacific plate subduction.