Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Crystal Growth and Design, 7(11), p. 3250-3265, 2011

DOI: 10.1021/cg200506q

Links

Tools

Export citation

Search in Google Scholar

Supramolecular self-assembly of M-IDA complexes involving lone-pair•••π interactions: Crystal structures, Hirshfeld surface analysis and DFT calculations [H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)]

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mononuclear copper(II) and nickel(II) complexes, [(C5H6N2)Cu(IDA)(H2O)] (1) and (C5H7N2)2[Ni(IDA)2(H2O)] (2) [H2IDA = iminodiacetic acid; C5H6N2 = 4-aminopyridine; C5H7N2 = protonated 2-aminopyridine], have been synthesized, and their crystal structures were solved using single crystal X-ray diffraction data. A detailed analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are crucial in building different supramolecular architectures. Molecules are linked by a combination of N–H···O, O–H···O and C–H···O hydrogen bonds into two-dimensional framework, whose formation is readily analyzed in terms of substructures of lower dimensionality with zero finite zero-dimensional dimeric units as the building blocks within the structures. Moreover, the aromatic molecules that are engaged in lone pair···π interactions with the noncoordinated carbonyl moieties play a crucial role in stabilizing the self-assembly process observed for both complexes. Intricate combinations of hydrogen bonding, lone pair···π and π–π interactions are fully described along with the computational studies.