Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Chemical Theory and Computation, 5(11), p. 2087-2096, 2015

DOI: 10.1021/acs.jctc.5b00099

Links

Tools

Export citation

Search in Google Scholar

Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k constitutional isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semi-empirical quantum chemistry and machine learning models trained on 1 and 10\% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.