Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(6), 2015

DOI: 10.1038/ncomms8009

Links

Tools

Export citation

Search in Google Scholar

Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

Journal article published in 2015 by Daniel Görl, Xin Zhang ORCID, Vladimir Stepanenko ORCID, Frank Würthner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNew synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating.