Published in

Springer Verlag, Pflügers Archiv European Journal of Physiology, 3(456), p. 459-466

DOI: 10.1007/s00424-007-0390-4

Links

Tools

Export citation

Search in Google Scholar

Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing

Journal article published in 2008 by Leigh Anne Swayne, Emmanuel Bourinet ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

N- and T-type voltage-gated calcium channels are key established players in chronic pain. Current work suggests that alternative splicing of these channels constitutes an important aspect in the investigation of their roles in the pathogenesis of chronic pain. Recent N-type channel studies describe a nociceptor-enriched alternatively spliced module responsible for voltage-independent G protein modulation and internalization, which is implicated in the control of distinct nociceptive pathways. On the contrary, although a large body of work has demonstrated that peripheral Cav 3.2-encoded T-type currents are involved in several types of chronic pain, little is known with respect to the expression of numerous newly discovered splice variants in specific pain pathways. The elucidation of the new layers of molecular complexity uncovered in N- and T-type channel splice variants and their respective locations and roles in different pain pathways will allow for the development of better therapeutic strategies for the treatment of chronic pain.