Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 2(58), p. 787-792

DOI: 10.1021/jf901951z

Links

Tools

Export citation

Search in Google Scholar

Design of Natural Food Antioxidant Ingredients through a Chemometric Approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present work, an environmentally friendly extraction process using subcritical conditions has been tested to obtain potential natural food ingredients from natural sources such as plants, fruits, spirulina, propolis, and tuber, with the scope of substituting synthetic antioxidants, which are subject to regulation restrictions and might be harmful for human health. A full characterization has been undertaken from the chemical and biochemical point of view to be able to understand their mechanism of action. Thus, an analytical method for profiling the compounds responsible for the antioxidant activity has been used, allowing the simultaneous determination of water-soluble vitamins, fat-soluble vitamins, phenolic compounds, carotenoids, and chlorophylls in a single run. This information has been integrated and analyzed using a chemometrical approach to correlate the bioactive compounds profile with the antioxidant activity and thus to be able to predict antioxidant activities of complex formulations. As a further step, a simplex centroid mixture design has been tested to find the optimal formulation and to calculate the effect of the interaction among individual extracts in the mixture.