Taylor and Francis Group, Materials and Manufacturing Processes, 1(21), p. 63-73
Full text: Download
MIG welding of zinc-coated thin plates in the automotive industry leads to major issues, mainly zinc evaporation followed by a decrease of corrosion resistance, as well as residual strains and stresses difficult to minimize. The use of a lower heat input technique for joining galvanized steels would bring significant benefit, if the final overall mechanical properties of the joints are adequate for the application. The use of MIG brazing (MIGB) with the recently commercialized alloyed copper-based filler metal is an alternative worth considering. The present paper addresses the MIGB processes, describing the influence of the different shielding gases and the process parameters on the mechanical, corrosion, and metallurgical properties of the joint, when lower heat input procedures are targeted. The paper describes the influence of the gases on the mechanical properties of the brazed joint, both in normal conditions after joining and after corrosion in a salt water environment. Microstructural features of the different zones are discussed. Results of corrosion and tensile tests are presented and interpreted.